A nonparametric approach to 3D shape analysis from digital camera images - I

نویسندگان

  • Vic Patrangenaru
  • X. Liu
  • S. Sugathadasa
چکیده

This article for the first time develops a nonparametric methodology for the analysis of projective shapes of configurations of landmarks on real 3D objects from their regular camera pictures. A fundamental result in computer vision, emulating the principle of human vision in space, claims that, generically, a finite 3D configuration of points can be retrieved from corresponding configurations in a pair of camera images, up to a projective transformation. Consequently, the projective shape of a 3D configuration can be retrieved from two of its planar views, and a projective shape analysis can be pursued from a sample of images. Projective shapes are here regarded as points on projective shape manifolds. Using large sample and nonparametric bootstrap methodology for extrinsic means on manifolds, one gives confidence regions and tests for the mean projective shape of a 3D configuration from its 2D camera images. Two examples are given: an example of testing for accuracy of a simple manufactured object using mean projective shape analysis, and a face identification example. Both examples are data driven based on landmark registration in digital images. © 2009 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nonparametric Approach to 3D Shape Analysis from Digital Camera Images - I. in Memory of W. P. Dayawansa

In this article, for the first time, one develops a nonparametric methodology for an analysis of shapes of configurations of landmarks on real 3D objects from regular camera photographs, thus making 3D shape analysis very accessible. A fundamental result in computer vision by Faugeras (1992), Hartley, Gupta and Chang (1992) is that generically, a finite 3D configuration of points can be retriev...

متن کامل

A Passive Full Body Scanner Using Shape from Silhouettes

This contribution describes a camera-based approach to fully automatically create 3D models of persons. A setup of sixteen digital cameras is used to capture the images of the person to be scanned. Using a monochromatic background and the shape-from-silhouette approach a 3D model is created automatically. Using the original images the models are realistically textured. In future 3D tele presenc...

متن کامل

Non-destructive Method for Estimating Biomass of Plants Using Digital Camera Images

Abstract Plant growth and biomass assessments are required in production and research. Such assessments are followed by major decisions (e.g., harvest timing) that channel resources and influence outcomes. In research, resources required to assess crop status affect other aspects of experimentation and, therefore, discovery. Destructive harvests are important because they influence treatment s...

متن کامل

Application of Shape Analysis on 3D Images - MRI of Renal Tumors

The image recognotion and the classification of objects according to the images are more in focus of interests, especially in medicine. A mathematical procedure allows us, not only to evaluate the amount of data per se, but also ensures that each image is pro- cessed similarly. Here in this study, we propose the power of shape analysis, in conjunction with neural networks for reducing white n...

متن کامل

Projective Shape Analysis for Noncalibrated Pinhole Camera Views . To the Memory

In this paper nonparametric statistical technology is derived for estimating with confidence a 3D configuration of points from noncalibrated camera views of such a configuration. This is applied to pattern recognition of a spatial scene, from multiple views, in absence of occlusions. keywords scene reconstruction, pinhole camera views, image analysis, projective shape data analysis AMS subject ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 101  شماره 

صفحات  -

تاریخ انتشار 2010